skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Litz, Heiner"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2026
  2. The volume of data generated and stored in contemporary global data centers is experiencing exponential growth. This rapid data growth necessitates efficient processing and anal- ysis to extract valuable business insights. In distributed data processing systems, data undergoes exchanges between the compute servers that contribute significantly to the total data processing duration in adequately large clusters, neces- sitating efficient data transport protocols. Traditionally, data transport frameworks such as JDBC and ODBC have used TCP/IP-over-Ethernet as their under- lying network protocol. Such frameworks require serializing the data into a single contiguous buffer before handing it off to the network card, primarily due to the requirement of contiguous data in TCP/IP. In OLAP use cases, this seri- alization process is costly for columnar data batches as it involves numerous memory copies that hurt data transport duration and overall data processing performance. We study the serialization overhead in the context of a widely-used columnar data format, Apache Arrow, and propose lever- aging RDMA to transport Arrow data over Infiniband in a zero-copy manner. We design and implement Thallus, an RDMA-based columnar data transport protocol for Apache Arrow based on the Thallium framework from the Mochi ecosystem, compare it with a purely Thallium RPC-based implementation, and show substantial performance improve- ments can be achieved by using RDMA for columnar data transport. 
    more » « less
  3. Disaggregated memory systems achieve resource utilization efficiency and system scalability by distributing computation and memory resources into distinct pools of nodes. RDMA is an attractive solution to support high-throughput communication between different disaggregated resource pools. However, existing RDMA solutions face a dilemma: one-sided RDMA completely bypasses computation at memory nodes, but its communication takes multiple round trips; two-sided RDMA achieves one-round-trip communication but requires non-trivial computation for index lookups at memory nodes, which violates the principle of disaggregated memory. This work presents Outback, a novel indexing solution for key-value stores with a one-round-trip RDMA-based network that does not incur computation-heavy tasks at memory nodes. Outback is the first to utilize dynamic minimal perfect hashing and separates its index into two components: one memory-efficient and compute-heavy component at compute nodes and the other memory-heavy and compute-efficient component at memory nodes. We implement a prototype of Outback and evaluate its performance in a public cloud. The experimental results show that Outback achieves higher throughput than both the state-of-the-art one-sided RDMA and two-sided RDMA-based in-memory KVS by 1.06--5.03×, due to the unique strength of applying a separated perfect hashing index. 
    more » « less
  4. Data cache prefetching is a well-established optimization to overcome the limits of the cache hierarchy and keep the processor pipeline fed with data. In principle, accurate, well-timed prefetches can sidestep the majority of cache misses and dramatically improve performance. In practice, however, it is challenging to identify which data to prefetch and when to do so. In particular, data can be easily requested too early, causing eviction of useful data from the cache, or requested too late, failing to avoid cache misses. Competition for limited off-chip memory bandwidth must also be balanced between prefetches and a program's regular "demand" accesses. Due to these challenges, prefetching can both help and hurt performance, and the outcome can depend on program structure, decisions about what to prefetch and when to do it, and, as we demonstrate in a series of experiments, program input, processor microarchitecture, and their interaction as well. To try to meet these challenges, we have designed the RPG2 system for online prefetch injection and tuning. RPG2 is a pure-software system that operates on running C/C++ programs, profiling them, injecting prefetch instructions, and then tuning those prefetches to maximize performance. Across dozens of inputs, we find that RPG2 can provide speedups of up to 2.15×, comparable to the best profile-guided prefetching compilers, but can also respond when prefetching ends up being harmful and roll back to the original code - something that static compilers cannot. RPG2 improves prefetching robustness by preserving its performance benefits, while avoiding slowdowns. 
    more » « less